ROTARY GEAR FLOW DIVIDERS
Field-proven Concentric’ Rotary Gear Flow Dividers are providing efficient, reliable service for a wide variety of applications in agricultural, materials handling, and construction equipment. These hydraulic flow dividers provide many useful functions from a single pump source:

- Synchronized operation of multiple cylinders or fluid motors.
- Proportional division of pump output among several circuits.
- Intensified pressure when pressure higher than pump capacity is needed.

WHY ROTARY GEAR FLOW DIVIDERS INSTEAD OF SPOOL TYPE DIVIDERS?

Connected within the hydraulic circuit, rotary gear flow dividers operate automatically and only when needed. They require no maintenance.

In a rotary gear divider, horsepower-in is equal to horsepower-out with very small efficiency losses. Consequently, it does not generate heat. Since the efficiency of the unit is a function of the pressure drop across the section, efficiencies approaching 98 percent are not uncommon. This enhances the overall system effectiveness. Spool type dividers require a significant pressure drop just to operate. Heat is designed in when spool type dividers are incorporated in an application. Much care has to be taken to accommodate the inherent inefficiencies of spool type dividers when sizing them for an application.

Rotary gear flow dividers are also more tolerant of contamination and more rugged than spool type flow dividers. Spool type dividers can be accurate and exhibit little internal leakage but their cost is generally as much as 25% greater than comparable rotary gear dividers.

DIFFERENTIAL RELIEF VALVES

Our modular design allows us to add differential relief valves in each section of our flow dividers. These valves are not system relief valves. They are commonly used in applications where cylinders must be synchronized. They also serve to protect the flow divider against excessive differential pressure in the divider which could be caused by actuators becoming stalled or restricted.

APPLICATION OF A ROTARY GEAR FLOW DIVIDER IN A CYLINDER CIRCUIT

Rotary Gear Flow Dividers are designed to synchronize hydraulic cylinders (bring them to equal stroke length) in one direction only. This needs to be in a direction where the cylinders bottom out (go to the end of their stroke). The synchronizing is accomplished because excess fluid is bled off over the flow divider's internal relief valves to feed the cylinder that is late getting to the end of its stroke. Reversing the direction of the cylinders, the Rotary Gear Flow Divider will act as a combiner with the same efficiency as a divider. Please note that a combiner doesn't regulate cylinder speed, so a flow control is required to limit maximum flow.

ROTARY GEAR FLOW DIVIDER USED AS AN INTENSIFIER

Press and clamping circuits that require high flow at low pressure and low flow at high pressure are good applications for Rotary Gear Flow Dividers to intensify pressure. High flow from the outputs of the divider are combined until high pressure is required, then one or more of the divider outputs are dumped to tank giving high pressure in the intensified circuit. Caution is required so that the pressure does not exceed the rating of the flow divider.

WHAT’S NEW AND INNOVATIVE ABOUT CONCENTRIC ROTARY GEAR FLOW DIVIDERS?

We have earned a reputation over the last 70 years as innovators and systems specialists. We go beyond the basic requirements for hydraulic components to analyze the total system goals. In doing this, many times we find that we can help solve a customer’s system problem by doing something different to our product. The following are examples of how we have done this with flow dividers:

Solenoid Actuated 2-Way Valves for Fluid Motor Drive Applications

This feature provides operator selection between a positive traction drive or differential drive on turf care vehicles, small utility vehicles and various mobile lift devices. This feature is available in 2, 3 or 4 section dividers.

ADJUSTABLE NEEDLE VALVE BETWEEN SECTIONS

To allow only the set amount of flow providing the desired differential effect for drive motors. It can also be adjusted for varying tire ratios.

WHY CONCENTRIC VS. OTHER ROTARY GEAR FLOW DIVIDERS?

Concentric GC series flow dividers are of cast iron construction with 1/2” diameter shaft and needle bearings for high pressure operation. The gear bores are held to extremely close tolerances to provide maximum efficiency. They are lighter weight than many competitors because no interface plates are required between sections. This feature also insures better shaft alignment and fewer leakage paths. Seal plates between each section provide additional insurance against leakage. The modular design easily accommodates multiple gear width combinations and multiple porting options. Concentric D series flow dividers incorporate the above features but substitute a 5/8” diameter shaft and needle bearings. The D series also substitutes o-ring seals between each section for enhanced sealing.

INSIDE THIS CATALOG ...

This catalog combines both GC and D series flow divider information, including European versions. We have included performance and dimensional information as well.

Please review the information provided to get a general understanding of what Concentric can offer your company. To answer your specific needs, please contact us. We have an excellent track record for meeting unique hydraulic system challenges.

Pictures on front cover are used with the kind permission of eg: Atlet, BT, Huddig, Scania, Toro and Volvo Construction Equipment.
GC Series Rotary Gear Flow Dividers

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Gear Face Width</th>
<th>Displacement</th>
<th>SAE Ports</th>
<th>Minimum Flow/Sec</th>
<th>Maximum Flow/Sec</th>
<th>Cont. Diff. Pressure Between Inlet/Outlet</th>
<th>Maxium Outlet Pressure Any Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>3/16</td>
<td>.097 in.³, .159 cm.³</td>
<td>9/16-18, 9/16-18</td>
<td>0.8 GPM, 3.0 L/M</td>
<td>1.7 GPM, 6.4 L/M</td>
<td>1800 PSI, 124 BAR</td>
<td>3500 PSI, 241 BAR</td>
</tr>
<tr>
<td>*08</td>
<td>1/4</td>
<td>.129 in.³, .212 cm.³</td>
<td>3/4-16, 3/4-16</td>
<td>1.2 GPM, 4.5 L/M</td>
<td>2.5 GPM, 9.5 L/M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3/8</td>
<td>.194 in.³, .318 cm.³</td>
<td>3/4-16, 9/16-18</td>
<td>1.7 GPM, 6.4 L/M</td>
<td>4.5 GPM, 13.2 L/M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*16</td>
<td>1/2</td>
<td>.258 in.³, .424 cm.³</td>
<td>7/8-14, 7/8-14</td>
<td>2.5 GPM, 9.5 L/M</td>
<td>5.0 GPM, 18.9 L/M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5/8</td>
<td>.323 in.³, .530 cm.³</td>
<td>7/8-14, 7/8-14</td>
<td>3.0 GPM, 11.4 L/M</td>
<td>6.0 GPM, 22.7 L/M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*24</td>
<td>3/4</td>
<td>.388 in.³, .636 cm.³</td>
<td>7/8-14, 7/8-14</td>
<td>3.5 GPM, 13.2 L/M</td>
<td>7.0 GPM, 26.5 L/M</td>
<td>1600 PSI, 110 BAR</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7/8</td>
<td>.453 in.³, .742 cm.³</td>
<td>7/8-14, 7/8-14</td>
<td>4.0 GPM, 15.1 L/M</td>
<td>8.0 GPM, 30.3 L/M</td>
<td>1300 PSI, 90 BAR</td>
<td></td>
</tr>
<tr>
<td>*32</td>
<td>1</td>
<td>.517 in.³, .848 cm.³</td>
<td>7/8-14, 7/8-14</td>
<td>4.5 GPM, 17.0 L/M</td>
<td>9.0 GPM, 34.1 L/M</td>
<td>1200 PSI, 83 BAR</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Flows listed above are per section.

For European Style GC Flow Dividers, all inlet and outlet ports are 1/2-14 BSPP.

* Stock units available in two and four section versions, see page 9.

MAXIMUM inlet pressure 3000 psi (207 bar) • MAXIMUM outlet pressure 3500 psi (241 bar). For 3 section flow dividers or flow dividers with unequal sections, contact the factory. Recommended operating range 2000 rpm to 3500 rpm.

Performance

The curve on the left and the chart above can be useful in selecting the proper size flow divider sections. The curve shows speed vs. flow per section.

For equal sized sections:
Assume four section dividers with a total flow of 12 GPM (45.4 L/M) in and 3 GPM (11.4 L/M) per section out. From the chart, an order code 12 or 20 would be suitable for this flow. However, the nearer the mid-range, the better the efficiency. From the curve, order code 16 crosses the 3 GPM (11.4 L/M) line at 2750 RPM. The best selection is the order code 16 gear section.

For proportional flow, the curve is used as follows:
Assume a four section divider with an input flow of 19 GPM (71.9 L/M) and an outlet flow of 7 GPM (26.5 L/M), 5 GPM (18.9 L/M), 4 GPM (15.1 L/M), and 3 GPM (11.4 L/M). With a straight edge on the 3000 RPM line, proper flow for 7 GPM (26.5 L/M) is given with an order code 32 gear section, 5 GPM (18.9 L/M) with an order code 24 gear section, 4 GPM (15.1 L/M) with an order code 20 gear section and 3 GPM (11.4 L/M) with an order code 16 gear section.

The chart above also shows the allowable differential pressures. The differential relief valve setting is determined by the maximum pressure needed by the circuit minus the inlet pressure without exceeding the allowable differential pressure. Either the continuous or intermittent differential pressures are used, depending on the circuit requirement. The differential relief valve is adjustable through a range of 500 - 1000 PSI (34.5 - 69 BAR). Our standard setting for the differential relief valves is 750 PSI (51.7 BAR).
D Series Rotary Gear Flow Dividers

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Gear Face Width</th>
<th>Displacement In.³</th>
<th>SAE Ports Inlet/Outlet</th>
<th>Minimum Flow/Sec GPM</th>
<th>Maximum Flow/Sec GPM</th>
<th>Continuous Differential Between Sections PSI</th>
<th>BAR</th>
<th>Intermittent Differential Between Sections PSI</th>
<th>BAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>1/4</td>
<td>.232</td>
<td>7/8-14/9/16-18</td>
<td>2</td>
<td>7.6</td>
<td>3000</td>
<td>207</td>
<td>3000</td>
<td>207</td>
</tr>
<tr>
<td>12</td>
<td>3/8</td>
<td>.349</td>
<td>1 5/16-12/3/4-16</td>
<td>3</td>
<td>11.4</td>
<td>2750</td>
<td>190</td>
<td>3000</td>
<td>207</td>
</tr>
<tr>
<td>16</td>
<td>1/2</td>
<td>.465</td>
<td>1 5/16-12/3/4-16</td>
<td>4</td>
<td>15.2</td>
<td>2500</td>
<td>172</td>
<td>3000</td>
<td>207</td>
</tr>
<tr>
<td>20</td>
<td>5/8</td>
<td>.581</td>
<td>1 5/16-12/7/8-14</td>
<td>5</td>
<td>19.0</td>
<td>2000</td>
<td>138</td>
<td>2750</td>
<td>190</td>
</tr>
<tr>
<td>24</td>
<td>3/4</td>
<td>.697</td>
<td>1 5/16-12/7/8-14</td>
<td>6</td>
<td>22.9</td>
<td>1500</td>
<td>103</td>
<td>2250</td>
<td>155</td>
</tr>
<tr>
<td>28</td>
<td>7/8</td>
<td>.813</td>
<td>1 5/16-12/1 1/16-12</td>
<td>7</td>
<td>26.7</td>
<td>1200</td>
<td>83</td>
<td>1750</td>
<td>121</td>
</tr>
</tbody>
</table>

NOTE: Flows listed above are per section.

* Stock units available in two and four section versions, see page 9.

MAXIMUM inlet pressure 3000 psi (207 bar) • MAXIMUM outlet pressure 4500 psi (310.3 bar). For 3 section flow dividers or flow dividers with unequal sections, contact the factory. Recommended operating range 2000 rpm to 4000 rpm. NOTE: Do not exceed 4500 rpm.

Performance

The curve on the left and the chart above can be useful in selecting the proper size flow divider sections. The curve shows speed vs. flow per section.

For equal sized sections:
Assume two section dividers with a total flow of 16 GPM (60.6 L/M) in and 8 GPM (30.3 L/M) per section out. From the chart, an order code 16, 20, 24 or 28 would be suitable for this flow. However, the nearer the mid-range, the better the efficiency. From the curve, order code 20 crosses the 8 GPM (30.3 L/M) line at 3200 RPM. The best selection is the order code 20 gear section.

For proportional flow, the curve is used as follows:
Assume a three section divider with an input flow of 20 GPM (75.7 L/M) and an outlet flow of 10 GPM (37.9 L/M), 7 GPM (26.5 L/M), and 3 GPM (11.4 L/M). With a straight edge on the RPM line, note the 10 GPM (37.9 L/M) line at 2800 RPM gives the proper flow with an order code 28 gear section, an order code 20 gear section and an order code 08 gear section.

The chart above also shows the allowable differential pressures. The differential relief valve setting is determined by the maximum pressure needed by the circuit minus the inlet pressure without exceeding the allowable differential pressure. Either the continuous or intermittent differential pressures are used, depending on the circuit requirement. The differential relief valve is adjustable through a range of 500 - 1000 PSI (34.5 - 69 BAR). Our standard setting for the differential relief valves is 750 PSI (51.7 BAR).
2 Section

GC Series Flow Divider

U.S. & European Style

NOTE: The only difference between the U.S. version and European version is the porting configuration. The U.S. version has SAE standard ports (refer to page 3) and the European version has 1/2-14 BSPP ports.

(inches are in brackets)
NOTE: The only difference between the U.S. version and European version is the porting configuration.
The U.S. version has SAE standard ports (refer to page 3) and the European version has 1/2-14 BSPP ports.

(inches are in brackets)
2 Section
D Series Flow Divider
(inches in brackets)
4 Section
D Series Flow Divider
(inches in brackets)

Hydraulic Schematic
GC Series (U.S. Version) Flow Dividers

<table>
<thead>
<tr>
<th>Sections</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Relief Valve</th>
<th>Displacement in.³ Per Section</th>
<th>Model Code X-Ref</th>
<th>Stock P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3/4-16</td>
<td>3/4-16</td>
<td>Included</td>
<td>.129</td>
<td>FG1220021</td>
<td>1300634</td>
</tr>
<tr>
<td>2</td>
<td>7/8-14</td>
<td>7/8-14</td>
<td>Included</td>
<td>.258</td>
<td>FG1440021</td>
<td>1300635</td>
</tr>
<tr>
<td>2</td>
<td>7/8-14</td>
<td>7/8-14</td>
<td>Included</td>
<td>.388</td>
<td>FG1770021</td>
<td>1300636</td>
</tr>
<tr>
<td>2</td>
<td>7/8-14</td>
<td>7/8-14</td>
<td>Included</td>
<td>.517</td>
<td>FG1990021</td>
<td>1300637</td>
</tr>
<tr>
<td>4</td>
<td>3/4-16</td>
<td>3/4-16</td>
<td>Included</td>
<td>.129</td>
<td>FG3222221</td>
<td>1303139</td>
</tr>
<tr>
<td>4</td>
<td>7/8-14</td>
<td>9/16-18</td>
<td>Included</td>
<td>.258</td>
<td>FG3444421</td>
<td>1303140</td>
</tr>
<tr>
<td>4</td>
<td>7/8-14</td>
<td>3/4-16</td>
<td>Included</td>
<td>.388</td>
<td>FG3777721</td>
<td>1303142</td>
</tr>
<tr>
<td>4</td>
<td>7/8-14</td>
<td>7/8-14</td>
<td>Included</td>
<td>.517</td>
<td>FG3999921</td>
<td>1303143</td>
</tr>
</tbody>
</table>

GC Series (European Version) Flow Dividers

<table>
<thead>
<tr>
<th>Sections</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Relief Valve</th>
<th>Displacement cc Per Section</th>
<th>Model Code X-Ref</th>
<th>Stock P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/2-14</td>
<td>1/2-14</td>
<td>Included</td>
<td>2.11</td>
<td>FG1220023</td>
<td>1303144</td>
</tr>
<tr>
<td>2</td>
<td>1/2-14</td>
<td>1/2-14</td>
<td>Included</td>
<td>3.18</td>
<td>FG1330023</td>
<td>1303165</td>
</tr>
<tr>
<td>2</td>
<td>1/2-14</td>
<td>1/2-14</td>
<td>Included</td>
<td>4.24</td>
<td>FG1440023</td>
<td>1303149</td>
</tr>
<tr>
<td>4</td>
<td>1/2-14</td>
<td>1/2-14</td>
<td>Included</td>
<td>2.11</td>
<td>FG3222223</td>
<td>1303157</td>
</tr>
<tr>
<td>4</td>
<td>1/2-14</td>
<td>1/2-14</td>
<td>Included</td>
<td>4.24</td>
<td>FG3444423</td>
<td>1303147</td>
</tr>
</tbody>
</table>

D Series Flow Dividers

<table>
<thead>
<tr>
<th>Sections</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Relief Valve</th>
<th>Displacement in.³ Per Section</th>
<th>Model Code X-Ref</th>
<th>Stock P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 5/16-12</td>
<td>7/8-14</td>
<td>Included</td>
<td>.581 (9.5 cc)</td>
<td>FD2-0-V20S7.5-20S7.5-0-B10</td>
<td>1300315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FD2-0-V20S7.5-20S7.5-0-B10</td>
<td>1300315</td>
</tr>
<tr>
<td>2</td>
<td>1 5/16-12</td>
<td>3/4-16</td>
<td>Included</td>
<td>.348 (5.7 cc)</td>
<td>FD2-V20S7.5-20S7.5-0-B10</td>
<td>1300322</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FD2-V20S7.5-20S7.5-0-B10</td>
<td>1300322</td>
</tr>
<tr>
<td>4</td>
<td>1 5/16-12</td>
<td>7/8-14</td>
<td>Included</td>
<td>.581 (9.5 cc)</td>
<td>FD2-V1207.5-1207.5-0-B10</td>
<td>1300323</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FD2-V1207.5-1207.5-0-B10</td>
<td>1300323</td>
</tr>
<tr>
<td>4</td>
<td>1 5/16-12</td>
<td>3/4-16</td>
<td>Included</td>
<td>.348 (5.7 cc)</td>
<td>FD2-V28T7.5-28T7.5-0-B10</td>
<td>1300324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FD2-V28T7.5-28T7.5-0-B10</td>
<td>1300324</td>
</tr>
<tr>
<td>2</td>
<td>1 5/16-12</td>
<td>1 1/16-12</td>
<td>Included</td>
<td>.813 (13.3 cc)</td>
<td>FD2-V28T7.5-28T7.5-0-B10</td>
<td>1300352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FD2-V28T7.5-28T7.5-0-B10</td>
<td>1300352</td>
</tr>
<tr>
<td>4</td>
<td>1 5/16-12</td>
<td>1 1/16-12</td>
<td>Included</td>
<td>.813 (13.3 cc)</td>
<td>FD2-V28T7.5-28T7.5-0-B10</td>
<td>1300353</td>
</tr>
</tbody>
</table>
How To Order Concentric GC Series Flow Dividers

Concentric stocks a selection of GC Series two section and four section flow dividers, which include a built-in adjustable differential relief valve in each section. See page 9 for a list of stock available. If the GC Series flow divider required is not a stock item at Concentric, it may be ordered by following the ordering code show below. Non-stock options require a 100-piece minimum.

Determine the number of sections needed.
Determine gear size of sections required:
Fill in all blanks in model code below:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Type**
 - F: Flow Divider

2. **Series**
 - G: GC Series Flow Divider

3. **Number of Sections**
 - 1: Two Sections
 - 2: Three Sections
 - 3: Four Sections

4. **Gear Size(s) (each section)**
 - 0: None
 - 1: .097 in.³/rev.
 - 2: .129 in.³/rev.
 - 3: .194 in.³/rev.
 - 4: .258 in.³/rev.
 - 5: .291 in.³/rev.
 - 6: .323 in.³/rev.
 - 7: .388 in.³/rev.
 - 8: .453 in.³/rev.
 - 9: .517 in.³/rev.

5. **Relief Valve**
 - 1: None
 - 2: One Each Section

6. **Porting**
 - 1: SAE (Standard)
 - 2: NPTF

EXAMPLE: FG1440021
Two section flow divider, .258 in.³/rev. gear first section, .258 in.³/rev. gear second section, no 3rd or 4th section, relief valve in each section, SAE ports.

How To Order Concentric GC Series Flow Dividers (European Version)

Concentric stocks a selection of GC Series two section and four section flow dividers (European Version), which include a built-in adjustable differential relief valve in each section. See page 9 for a list of stock available. If the GC Series flow divider required is not a stock item at Concentric, it may be ordered by following the ordering code show below. Non-stock options require a 100-piece minimum.

Determine the number of sections needed.
Determine gear size of sections required:
Fill in all blanks in model code below:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Type**
 - F: Flow Divider

2. **Series**
 - G: GC Series Flow Divider

3. **Number of Sections**
 - 1: Two Sections
 - 2: Three Sections
 - 3: Four Sections

4. **Gear Size(s) (each section)**
 - 0: None
 - 1: 1.58 cc/rev.
 - 2: 2.11 cc/rev.
 - 3: 3.18 cc/rev.
 - 5: 4.76 cc/rev.
 - 6: 5.29 cc/rev.
 - 7: 6.36 cc/rev.
 - 8: 7.42 cc/rev.

5. **Relief Valve**
 - 1: None
 - 2: One Each Section

6. **Porting**
 - 1: SAE (Standard)
 - 2: NPTF
 - 3: BSPP

EXAMPLE: FG1220023
Two section flow divider, 2.11 cc/rev. gear first section, 2.11 cc/rev. gear second section, no 3rd or 4th section, relief valve in each section, BSPP ports.
How To Order Concentric D Series Flow Dividers

Concentric stocks a selection of D Series two section and four section flow dividers, which include a built-in adjustable differential relief valve in each section. See page 9 for a list of stock available. If the D Series flow divider required is not a stock item at Concentric, it may be ordered by following the ordering code show below. Non-stock options require a 100-piece minimum.

EXAMPLE: FD2-V28T7.5-28T7.5-28T7.5-B10

D Series Flow Divider, two section flow divider, #16 SAE 1-5/16" - 12 inlet port, .813 in.^3/rev. (13.3 cc/rev.) Position A Section Displacement, #12 SAE 1-1/16" - 12 Position A Section Outlet Port, 750 PSI (51.7 BAR) Position A Section Relief Valve, .813 in.^3/rev. (13.3 cc/rev.) Position B Section Displacement, #12 SAE 1-1/16" - 12 Position B Section Outlet Port, 750 PSI (51.7 BAR) Position B Section Relief Valve, .813 in.^3/rev. (13.3 cc/rev.) Position D Section Displacement, #12 SAE 1-1/16" - 12 Position D Section Outlet Port, 750 PSI (51.7 BAR) Position D Section Relief Valve, Standard Bracket, Design Series 10 (standard).

1. **Paint Option**
 - P1: Standard Black
 - P2: Grey

2. **Model Series**
 - FD: D Series Flow Divider

3. **Number of Sections**
 - 2: Two Sections
 - 3: Three Sections
 - 4: Four Sections

4. **Inlet Port**
 - S: #10 SAE 7/8" - 14 (Displacement 08 only)
 - T: #12 SAE 1-1/16" - 12
 - V: #16 SAE 1-5/16" - 12 (Except Displacement 08)

5. **Position A Section Displacement Code**
 - 08: .232 in.^3/rev. (3.8 cc/rev.)
 - 12: .348 in.^3/rev. (5.7 cc/rev.)
 - 16: .465 in.^3/rev. (7.6 cc/rev.)
 - 20: .581 in.^3/rev. (9.5 cc/rev.)
 - 24: .697 in.^3/rev. (11.4 cc/rev.)
 - 28: .813 in.^3/rev. (13.3 cc/rev.)

6. **Position A Section Outlet Port**
 - H: #9/16" - 18 SAE
 - Q: #8 SAE 3/4" - 16
 - S: #10 SAE 7/8" - 14 (Displacement 08 only)
 - T: #12 SAE 1-1/16" - 12
 - V: #16 SAE 1-5/16" - 12 (Except Displacement 08)

7. **Position A Section Relief Valve**
 - Omit: No Valve
 - 15: 1500 PSI (103.5 BAR)
 - 7.5: 750 PSI (51.7 BAR)

8. **Position B Section Displacement Code**
 - 08: .232 in.^3/rev. (3.8 cc/rev.)
 - 12: .348 in.^3/rev. (5.7 cc/rev.)
 - 16: .465 in.^3/rev. (7.6 cc/rev.)
 - 20: .581 in.^3/rev. (9.5 cc/rev.)
 - 24: .697 in.^3/rev. (11.4 cc/rev.)
 - 28: .813 in.^3/rev. (13.3 cc/rev.)

9. **Position B Section Outlet Port**
 - H: #9/16" - 18 SAE
 - Q: #8 SAE 3/4" - 16
 - S: #10 SAE 7/8" - 14 (Displacement 08 only)
 - T: #12 SAE 1-1/16" - 12
 - V: #16 SAE 1-5/16" - 12 (Except Displacement 08)

10. **Position B Section Relief Valve**
 - Omit: No Valve
 - 15: 1500 PSI (103.5 BAR)
 - 7.5: 750 PSI (51.7 BAR)

11. **Position C Section Displacement Code**
 - 08: .232 in.^3/rev. (3.8 cc/rev.)
 - 12: .348 in.^3/rev. (5.7 cc/rev.)
 - 16: .465 in.^3/rev. (7.6 cc/rev.)
 - 20: .581 in.^3/rev. (9.5 cc/rev.)
 - 24: .697 in.^3/rev. (11.4 cc/rev.)
 - 28: .813 in.^3/rev. (13.3 cc/rev.)

12. **Position C Section Outlet Port**
 - H: #9/16" - 18 SAE
 - Q: #8 SAE 3/4" - 16
 - S: #10 SAE 7/8" - 14 (Displacement 08 only)
 - T: #12 SAE 1-1/16" - 12
 - V: #16 SAE 1-5/16" - 12 (Except Displacement 08)

13. **Position C Section Relief Valve**
 - Omit: No Valve
 - 15: 1500 PSI (103.5 BAR)
 - 7.5: 750 PSI (51.7 BAR)

14. **Position D Section Displacement Code**
 - 08: .232 in.^3/rev. (3.8 cc/rev.)
 - 12: .348 in.^3/rev. (5.7 cc/rev.)
 - 16: .465 in.^3/rev. (7.6 cc/rev.)
 - 20: .581 in.^3/rev. (9.5 cc/rev.)
 - 24: .697 in.^3/rev. (11.4 cc/rev.)
 - 28: .813 in.^3/rev. (13.3 cc/rev.)

15. **Position D Section Outlet Port**
 - H: #9/16" - 18 SAE
 - Q: #8 SAE 3/4" - 16
 - S: #10 SAE 7/8" - 14 (Displacement 08 only)
 - T: #12 SAE 1-1/16" - 12
 - V: #16 SAE 1-5/16" - 12 (Except Displacement 08)

16. **Position D Section Relief Valve**
 - Omit: No Valve
 - 15: 1500 PSI (103.5 BAR)
 - 7.5: 750 PSI (51.7 BAR)

17. **Bracket**
 - B: Standard Bracket
 - Omit: No Bracket

18. **Design Series**
 - 10: Standard
Concentric will not accept responsibility for any catalog errors and reserves the right to modify its products without prior notice. This also applies to products already ordered, provided that such modifications can be made without affecting technical specifications. All trademarks in this material are properties of their respective owners.